DSP tutorial: RTTY decoder using FFT filtering
Last modified: March 4th, 2012This example is a slightly better RTTY decoder, it uses FFT only for filtering, still uses chunks but doesn’t make bit decisions by calculating the average power of them.
Instead it uses the signal flow discussed in this paper:
Note that this example only implements the demodulator, UART emulator and Baudot terminal blocks from the diagram. For further explanation of the mechanism, continue to the next section of the tutorial.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 | // reads a chunk from the sound device public int getChunk(double[] chunkBuffer) { byte[] abBuffer = new byte[oneChunkSampleCount*2]; int samplesRead = 0; // waiting for the buffer to get filled try { while (tdl.available() < abBuffer.length) Thread.sleep(0, 1); // without this, the audio will be choppy int bytesRead = tdl.read(abBuffer, 0, abBuffer.length); // converting frames stored as bytes to double values samplesRead = bytesRead / 2; for (int i = 0; i < samplesRead; i++) { chunkBuffer[i] = ((abBuffer[i * 2] & 0xFF) | (abBuffer[i * 2 + 1] << 8)) / 32768.0; } } catch (InterruptedException e) { } return samplesRead; } // analyzes a chunk with FFT and returns the bit value public int demodulator() { int samplesRead = getChunk(signalLine1Buffer); // copying to the other line for (int i = 0; i < signalLine1Buffer.length; i++) { signalLine2Buffer[i] = signalLine1Buffer[i]; } // emptying fft buffer in case of samples read != fft buffer length for (int i = 0; i < signalLine1FFTData.length; i++) signalLine1FFTData[i] = signalLine2FFTData[i] = 0; for (int i = 0; i < samplesRead; i++) { // copying audio data to the fft data buffer, imaginary part is 0 signalLine1FFTData[2 * i] = signalLine1Buffer[i]; signalLine1FFTData[2 * i + 1] = 0; signalLine2FFTData[2 * i] = signalLine2Buffer[i]; signalLine2FFTData[2 * i + 1] = 0; } fft.complexForward(signalLine1FFTData); fft.complexForward(signalLine2FFTData); int binOfFreq0 = (int)Math.round((FREQ0*(signalLine1FFTData.length/2)/(double)SAMPLERATE)*2); int binOfFreq1 = (int)Math.round((FREQ1*(signalLine2FFTData.length/2)/(double)SAMPLERATE)*2); // zeroing out all freqs except the carrier on signal line 1 for (int i = 0; i < signalLine1FFTData.length; i += 2) { if (i != binOfFreq0) signalLine1FFTData[i] = signalLine1FFTData[i + 1] = 0; } // zeroing out all freqs except the carrier on signal line 2 for (int i = 0; i < signalLine2FFTData.length; i += 2) { if (i != binOfFreq1) signalLine2FFTData[i] = signalLine2FFTData[i + 1] = 0; } fft.complexInverse(signalLine1FFTData, false); fft.complexInverse(signalLine2FFTData, false); for (int i = 0; i < samplesRead; i++) { signalLine1Buffer[i] = signalLine1FFTData[2 * i]; signalLine2Buffer[i] = signalLine2FFTData[2 * i]; signalLine1Buffer[i] *= signalLine1Buffer[i]; // squaring signalLine2Buffer[i] *= signalLine2Buffer[i]; // squaring signalLine2Buffer[i] *= -1; // inverting signal line 2 // summing the two signal lines signalLine1Buffer[i] += signalLine2Buffer[i]; } int lowPassCutFreq = (int)Math.ceil(BITSPERSEC); int binOfLowPassCutFreq = (int)Math.round(((lowPassCutFreq * (signalLine1FFTData.length/2)) / (double)SAMPLERATE)*2); // lowpass filtering for (int i = 0; i < signalLine1FFTData.length; i++) signalLine1FFTData[i] = 0; for (int i = 0; i < samplesRead; i++) { // copying audio data to the fft data buffer, imaginary part is 0 signalLine1FFTData[2 * i] = signalLine1Buffer[i]; signalLine1FFTData[2 * i + 1] = 0; } fft.complexForward(signalLine1FFTData); for (int i = 0; i < signalLine1FFTData.length; i += 2) { if (i > binOfLowPassCutFreq) signalLine1FFTData[i] = signalLine1FFTData[i + 1] = 0; } fft.complexInverse(signalLine1FFTData, false); for (int i = 0; i < samplesRead; i++) { signalLine1Buffer[i] = signalLine1FFTData[2 * i] / 70; } baos.write(getBytesFromDoubles(signalLine1Buffer, samplesRead), 0, samplesRead * 2); // writing to the output wav for debugging purposes double average = 0; for (int i = 0; i < samplesRead; i++) { average += signalLine1Buffer[i]; } average /= samplesRead; if (average > 0) return 0; else return 1; } // this function returns at the half of a bit with the bit's value public int getBitDPLL() { boolean chunkPhaseChanged = false; int chunkVal = -1; int chunkPhase = 0; while (chunkPhase < CHUNKCOUNTPERBIT) { chunkVal = demodulator(); if (chunkVal == -1) break; if (!chunkPhaseChanged && chunkVal != oldChunkVal) { if (chunkPhase < CHUNKCOUNTPERBIT/2) chunkPhase++; // early else chunkPhase--; // late chunkPhaseChanged = true; } oldChunkVal = chunkVal; chunkPhase++; } // putting a tick to the output wav signing the moment when the DPLL returned /*baos.write(100); baos.write(100); baos.write(100); baos.write(100); baos.write(100); baos.write(100);*/ return chunkVal; } // this function returns only when the start bit is successfully received public void waitForStartBit() { int bitResult; while (!Thread.interrupted()) { do { bitResult = demodulator(); } while ((bitResult == 0 || bitResult == -1) && !Thread.interrupted()); //System.out.println("sb0: 1"); do { bitResult = demodulator(); } while ((bitResult == 1 || bitResult == -1) && !Thread.interrupted()); //System.out.println("sb1: 0"); // waiting half bit time for (int i = 0; i < CHUNKCOUNTPERBIT/2; i++) bitResult = demodulator(); //System.out.println("sb2: " + bitResult); if (bitResult == 0) break; } //System.out.println("start bit ok"); } @Override public void run() { tdl.start(); int byteResult = 0; int byteResultp = 0; int bitResult; while (!Thread.interrupted()) { waitForStartBit(); System.out.print("0 "); // first bit is the start bit, it's zero // reading 7 more bits for (byteResultp = 1, byteResult = 0; byteResultp < 8; byteResultp++) { bitResult = getBitDPLL(); if (bitResult == -1) { byteResult = -1; break; } switch (byteResultp) { case 6: // stop bit 1 System.out.print(" " + bitResult); break; case 7: // stop bit 2 System.out.print(bitResult); break; default: System.out.print(bitResult); byteResult += bitResult << (byteResultp-1); } } if (byteResult == -1) continue; switch (byteResult) { case 31: mode = RTTYMode.letters; System.out.println(" ^L^"); break; case 27: mode = RTTYMode.symbols; System.out.println(" ^F^"); break; default: switch (mode) { case letters: System.out.println(" *** " + RTTYLetters[byteResult] + "(" + byteResult + ")"); break; case symbols: System.out.println(" *** " + RTTYSymbols[byteResult] + "(" + byteResult + ")"); break; } } } tdl.stop(); tdl.close(); } |
download (855.1 kb)
About me
I'm Nonoo. This is my blog about music, sounds, filmmaking, amateur radio, computers, programming, electronics and other things I'm obsessed with.
... »
Trackback URL
No comments yet.
Trackback responses to this post