DSP tutorial: SSTV decoder

To decode an SSTV signal, you have several options:

  • Decode the VIS code and start image decoding according to the mode read from the VIS code
  • Ignore the VIS code and decode an image according to a previously set mode
  • Ignore the VIS code, start decoding when enough number of sync pulses have been received using a previously set mode
  • Autodetect the mode, start decoding when enough sync pulses have been received for the autodetection

This example uses the second approach, although it reads and processes the VIS code correctly. The previously set mode is Martin M1. After startup,a window opens and the app waits for an SSTV transmission header, and starts decoding line by line (it displays the decoding results in real time). The sound source can be a .wav file or the sound card.

Note that I’ve tried to implement SSTV decoding using FFT, but the resulting pictures were noisier than the recursive filter method (used in this example) when the SNR was low. You can download the source code for the example with the FFT method at the bottom of this page.

Resources

SSTV demodulation using recursive filters
VIS code and image data timings and format
Matlab code for SSTV modulation, demodulation
FFT demodulation, improvements, slant correction
Technical reference for SSTV
SSTV on Wikipedia

Open source SSTV apps:

qsstv
slowrx

Source code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    // this function returns the bit value of the current sample
    // possible results:
    // 1900 Hz      ->  4 (leader tone)
    // 1500 Hz      ->  3 (sync porch, separator pulse)
    // 1300 Hz      ->  2 (VIS bit 0)
    // 1200 Hz      ->  1 (break, VIS start&stop bit)
    // 1100 Hz      ->  0 (VIS bit 1)
    public int demodulator(double sample) {
        double[] lines = new double[5];

        lines[0] = bandPassFreq0(sample);
        lines[1] = bandPassFreq1(sample);
        lines[2] = bandPassFreq2(sample);
        lines[3] = bandPassFreq3(sample);
        lines[4] = bandPassFreq4(sample);

        // calculating the RMS of the lines (squaring them)
        lines[0] *= lines[0];
        lines[1] *= lines[1];
        lines[2] *= lines[2];
        lines[3] *= lines[3];
        lines[4] *= lines[4];

        // lowpass filtering the lines
        lines[0] = lowPass0(lines[0]);
        lines[1] = lowPass1(lines[1]);
        lines[2] = lowPass2(lines[2]);
        lines[3] = lowPass3(lines[3]);
        lines[4] = lowPass4(lines[4]);

        // writing output wav for debugging purposes
        wav0.write(getBytesFromDouble(lines[0]), 0, 2);
        wav1.write(getBytesFromDouble(lines[1]), 0, 2);
        wav2.write(getBytesFromDouble(lines[2]), 0, 2);
        wav3.write(getBytesFromDouble(lines[3]), 0, 2);
        wav4.write(getBytesFromDouble(lines[4]), 0, 2);

        // deciding which line is the highest and returning it's index
        int maxIndex = 0;
        double maxVal = lines[0];
        for (int i = 1; i < lines.length; i++) {
            if (lines[i] > maxVal) {
                maxVal = lines[i];
                maxIndex = i;
            }
        }
        return maxIndex;
    }

    // this function returns at the half of a bit with the bit's value
    public int getVisBit() {
        int val = 0;
        for (int i = 0; i < oneBitSampleCount; i++) {
            val = demodulator(getSample());
            wavFM.write(getBytesFromDouble(0), 0, 2);
        }

        // putting a tick to the output wav signing the moment when the function returned
        wav0.write(100); wav0.write(100); wav0.write(100); wav0.write(100); wav0.write(100); wav0.write(100);

        return val;
    }

    public void startVISReceiving() {
        int bitResult;

        System.out.print("Header received, starting receiving VIS code: ");
        oneBitSampleCount = SAMPLERATE*0.030;
        // waiting half bit time (15ms)
        for (int i = 0; i < oneBitSampleCount/2; i++) {
            demodulator(getSample());
            wavFM.write(getBytesFromDouble(0), 0, 2);
        }

        int VIS = 0;
        int parity = 0;
        boolean parityError = false;
        for (int i = 0; i < 9; i++) {
            bitResult = getVisBit();
            int bit = bitResult == 0 ? 1 : 0;
            switch (i) {
                case 7:
                    if (parity != bit)
                        parityError = true;
                    break;
                case 8: break; // stop bit
                default:
                    if (bitResult == 0)
                        VIS |= bit << (i);
                    parity ^= bit;
                    System.out.print(bit);
            }
        }
        System.out.println();
        System.out.print("VIS: " + VIS);
        if (parityError)
            System.out.print(" parity ERROR");
        else
            System.out.print(" parity OK");

        if (VIS == 44) // Martin M1 VIS code
            System.out.println(" VIS MARTIN OK");
        else
            System.out.println(" VIS UNKNOWN ERROR");

        // waiting to reach the end of the stop bit
        for (int i = 0; i < oneBitSampleCount/4+5; i++) {
            demodulator(getSample());
            wavFM.write(getBytesFromDouble(0), 0, 2);
        }
    }

    public int[] waitForEdge(int[] result) {
        result[0] = result[1];
        while (!Thread.interrupted()) {
            result[1] = demodulator(getSample());
            wavFM.write(getBytesFromDouble(0), 0, 2);
            if (result[0] != result[1] || Thread.interrupted())
                break;
            result[0] = result[1];
        };
        return result;
    }

    public void waitForStart() {
        int[] result = new int[2];
        int edge41Count = 0;

        result[0] = result[1] = 0;
        while (!Thread.interrupted()) {
            result = waitForEdge(result);

            // this part starts VIS receiving if we receive 41 -> 14 -> 41 transitions (bits 4141) in sequence
            switch (edge41Count) {
                case 0:
                    if (result[0] == 4 && result[1] == 1) {
                        edge41Count = 1;
                        System.out.println("Got edge: 41");
                        continue;
                    }
                    break;
                case 1:
                    if (result[0] == 1 && result[1] == 4) { // got 41 -> 14
                        edge41Count = 2;
                        System.out.println("Got edge: 14");
                        continue;
                    }
                    break;
                case 2:
                    if (result[0] == 4 && result[1] == 1) { // got 41 -> 14 -> 41
                        startVISReceiving();
                        receiveImage();
                    }
                    break;
            }
            edge41Count = 0;
        }
    }

    // 800Hz, beta 0.5, impulse length 50
    private double[] FIRLPCoeffs = { +0.0001082461, +0.0034041195, +0.0063570207, +0.0078081648,
            +0.0060550614, -0.0002142384, -0.0104500335, -0.0211855480,
            -0.0264527776, -0.0201269304, +0.0004419626, +0.0312014771,
            +0.0606261038, +0.0727491887, +0.0537028370, -0.0004362161,
            -0.0779387981, -0.1511168919, -0.1829049634, -0.1390189257,
            -0.0017097774, +0.2201896764, +0.4894395006, +0.7485289338,
            +0.9357596142, +1.0040320616, +0.9357596142, +0.7485289338,
            +0.4894395006, +0.2201896764, -0.0017097774, -0.1390189257,
            -0.1829049634, -0.1511168919, -0.0779387981, -0.0004362161,
            +0.0537028370, +0.0727491887, +0.0606261038, +0.0312014771,
            +0.0004419626, -0.0201269304, -0.0264527776, -0.0211855480,
            -0.0104500335, -0.0002142384, +0.0060550614, +0.0078081648,
            +0.0063570207, +0.0034041195, +0.0001082461,
          };
    private double[] xvFIRLP1 = new double[FIRLPCoeffs.length];
    public double FIRLowPass1(double sampleIn) {
        for (int i = 0; i < xvFIRLP1.length-1; i++)
            xvFIRLP1[i] = xvFIRLP1[i+1];
        xvFIRLP1[xvFIRLP1.length-1] = sampleIn / 5.013665674e+00;
        double sum = 0;
        for (int i = 0; i <= xvFIRLP1.length-1; i++)
            sum += (FIRLPCoeffs[i] * xvFIRLP1[i]);
        return sum;
    }
   
    private double[] xvFIRLP2 = new double[FIRLPCoeffs.length];
    public double FIRLowPass2(double sampleIn) {
        for (int i = 0; i < xvFIRLP2.length-1; i++)
            xvFIRLP2[i] = xvFIRLP2[i+1];
        xvFIRLP2[xvFIRLP2.length-1] = sampleIn / 5.013665674e+00;
        double sum = 0;
        for (int i = 0; i <= xvFIRLP2.length-1; i++)
            sum += (FIRLPCoeffs[i] * xvFIRLP2[i]);
        return sum;
    }

    // moving average
    private double[] xvMA1 = new double[9];
    private double yvMA1prev = 0;
    public double noiseReductionFilter1(double sampleIn) {
        for (int i = 0; i < xvMA1.length-1; i++)
            xvMA1[i] = xvMA1[i+1];
        xvMA1[xvMA1.length-1] = sampleIn;
        yvMA1prev = yvMA1prev+xvMA1[xvMA1.length-1]-xvMA1[0];
        return yvMA1prev;
    }

    private double[] xvMA2 = new double[xvMA1.length];
    private double yvMA2prev = 0;
    public double noiseReductionFilter2(double sampleIn) {
        for (int i = 0; i < xvMA2.length-1; i++)
            xvMA2[i] = xvMA2[i+1];
        xvMA2[xvMA2.length-1] = sampleIn;
        yvMA2prev = yvMA2prev+xvMA2[xvMA2.length-1]-xvMA2[0];
        return yvMA2prev;
    }

    //private double fmDemodMinVal = 0, fmDemodMaxVal = 0;
    private double oscPhase = 0;
    private double realPartPrev = 0, imaginaryPartPrev = 0;
    public int fmDemodulateLuminance(double sample) {
        oscPhase += (2 * Math.PI * 2000) / SAMPLERATE;
       
        double realPart = Math.cos(oscPhase) * sample;
        double imaginaryPart = Math.sin(oscPhase) * sample;
           
        if (oscPhase >= 2 * Math.PI)
            oscPhase -= 2 * Math.PI;

        realPart = FIRLowPass1(realPart);
        imaginaryPart = FIRLowPass2(imaginaryPart);

        realPart = noiseReductionFilter1(realPart);
        imaginaryPart = noiseReductionFilter2(imaginaryPart);

        sample = (imaginaryPart*realPartPrev-realPart*imaginaryPartPrev)/(realPart*realPart+imaginaryPart*imaginaryPart);

        realPartPrev = realPart;
        imaginaryPartPrev = imaginaryPart;

        sample += 0.2335; // bring the value above 0

        /*if (fmDemodMinVal > sample) { // these min/max values were used to calibrate DC demodulator
            fmDemodMinVal = sample;
            System.out.println("fmDemodMinVal: " + sample);
        }
        if (fmDemodMaxVal < sample) {
            fmDemodMaxVal = sample;
            System.out.println("fmDemodMaxVal: " + sample);
        }*/

       
        wavFM.write(getBytesFromDouble(sample), 0, 2);
        int luminance = (int)Math.round((sample/0.617)*255);
        luminance = 255-luminance;
        //System.out.println("lum: " + luminance);
        if (luminance > 255)
            luminance = 255;
        if (luminance < 0)
            luminance = 0;

        return luminance;
    }

    public void receiveImage() {
        double pixelLengthInS = 0.0004576;
        double syncLengthInS = 0.004862;
        double porchLengthInS = 0.000572;
        double separatorLengthInS = 0.000572;
        double channelLengthInS = pixelLengthInS*320;
        double channelGStartInS = syncLengthInS + porchLengthInS;
        double channelBStartInS = channelGStartInS + channelLengthInS + separatorLengthInS;
        double channelRStartInS = channelBStartInS + channelLengthInS + separatorLengthInS;
        double lineLengthInS = syncLengthInS + porchLengthInS + channelLengthInS + separatorLengthInS + channelLengthInS + separatorLengthInS + channelLengthInS + separatorLengthInS;
        double imageLengthInSamples = (lineLengthInS*256)*SAMPLERATE;
       
        double t, linet;
        double nextSyncTime = 0;

        // clearing displayed image
        for (int y = 0; y < 256; y++) {
            for (int x = 0; x < 320; x++)
                displayedImage[x][y] = new Color(0,0,0,0);
        }

        wav2.write(100); wav2.write(100); wav2.write(100); wav2.write(100); wav2.write(100); wav2.write(100);

        double sample;
        for (int s = 0; s < imageLengthInSamples && !Thread.interrupted(); s++) {
            t = s/(double)SAMPLERATE;
            linet = t % lineLengthInS;

            sample = getSample();
            demodulator(sample);
            int lum = fmDemodulateLuminance(sample);
           
            if (t >= nextSyncTime) {
                nextSyncTime += lineLengthInS;
                wav1.write(getBytesFromDouble(1), 0, 2);
                repaint();
            }

            if (linet >= channelGStartInS && linet < channelGStartInS + channelLengthInS ||
                linet >= channelBStartInS && linet < channelBStartInS + channelLengthInS ||
                linet >= channelRStartInS && linet < channelRStartInS + channelLengthInS) {

                int y = (int)Math.floor(t/lineLengthInS);
                if (linet >= channelGStartInS && linet < channelGStartInS + channelLengthInS) {
                    int x = (int)Math.floor(((linet-channelGStartInS)/channelLengthInS)*320);
                    displayedImage[x][y] = new Color(0, lum, 0);
                }
                if (linet >= channelBStartInS && linet < channelBStartInS + channelLengthInS) {
                    int x = (int)Math.floor(((linet-channelBStartInS)/channelLengthInS)*320);
                    displayedImage[x][y] = new Color(0, displayedImage[x][y].getGreen(), lum);
                }
                if (linet >= channelRStartInS && linet < channelRStartInS + channelLengthInS) {
                    int x = (int)Math.floor(((linet-channelRStartInS)/channelLengthInS)*320);
                    displayedImage[x][y] = new Color(lum, displayedImage[x][y].getGreen(), displayedImage[x][y].getBlue());
                    //displayedImage[x][y] = new Color(lum, lum, lum);
                }
            }
        }
        repaint();
        System.out.println("Finished rx.");
    }

download (5.6 mb)

(Lower quality FFT method:

download (443.8 kb)
)

Name (required)
E-mail (required - never shown publicly)
Webpage URL
Comment:
You may use <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> in your comment.

Trackback responses to this post

About me

Nonoo
I'm Nonoo. This is my blog about music, sounds, filmmaking, amateur radio, computers, programming, electronics and other things I'm obsessed with. ... »

Twitter

Listening now

My favorite artists